

Next Generation IDC Network Solution Overview

An Accton Group Company, Q4 2019

Date Huang, Presales Engineer, Edgecore Networks

About Me: Date Huang

• Speaker:

- 2019 OpenInfra Day Taiwan Speaker
 - Massive Bare-Metal Operating System Provisioning Improvement
- 2019 OSC Tokyo Fall Speaker
- 2019 COScon '19 Speaker
- 2019 Hong Kong Open Source Conference Speaker
 - De-centralized Bare-Metal Operating System Provisioning
- 2018 ISC High Performance Project Poster Demo
 - The Design and Implementation of Bare Metal Cluster Deployment Using BitTorrent
- 2017 Open Source Summit North America co-Speaker
 - Building Cloud Infra using cost-effective ARM Boards
- 2017 OpenStack Day Taiwan Speaker
 - Combine Continuous Integration (CI) with OpenStack
- 2016 OpenStack Day Taiwan Invited Speaker
 - OpenStack on ARM64

• Projects:

- Dozen Cloud
 - Mitaka Release Openstack Cloud Apps VPS by ARM64 CPU
- EZIO
 - BitTorrnet-based OS Bare-metal Provisioning

Introduction

Edgecore Open Networking Attributes

Dis-aggregation!

Edgecore Open Networking Benefits

Freedom Control Innovation

Benefits:

- Disaggregation provides FREEDOM of Choice and removes vendor lock-in
- Greater CONTROL over Network Infrastructure through open software platforms
- Rapid INNOVATION through a community & DevOps approach
- Reduced CAPEX and OPEX

SDDC Design Principles

Latest SDDC Design Principles

Edge-corE NETWORKS

- CLOS for Scale-Out
- Vender agnostic
- Full Life Cycle Automation
- Real-time Monitoring
- Proactive Analytics

CLOS Networks

Proprietary Chassis vs. Open Leaf & Spine Fabric

Proprietary Chassis

Vendor Lock-In

•

•

Leaf & Spine / Clos Fabric for <u>Scale-out</u>

CLOS/Leaf & Spine Design Benefits

2 tier (3-stage) CLOS Folded Architecture

- Scale-Out architecture that ideal for East-West traffic
- Scale-Out in smaller increments – Pay-As-You-Grow
- Simpler Network Fewer Protocols to build larger network
- One-hop away predictable latency
- Multiple paths for rich redundancy
- ECMP can be leveraged due to multiple paths

CLOS/Leaf & Spine Design Benefits (Cont'd)

• 3 tier (5-stage) Folded CLOS Architecture

The World-wide Best Practice for Server/Storage

The "**IP Fabric**" Leaf-Spine Network Design (RFC 7938) Started by Facebook and now deployed by enterprises and organizations around the world

w.edge-core.com

OCP Adoption Example: Yahoo Japan

Data Center Network

Industry Moving to Larger Bandwidth Fabric

Compute and storage

Compute and storage for HPC / AI / ML

Full Life Cycle Automation

Full Life Cycle Automation

Design & Build Stage Design & Build -- Template

Deploy Stage Deploy - Blueprint - Telemetry

Operate Deploy – Blueprint – Telemetry

core.com

Real-time Monitoring

- Streaming Telemetry Next Generation Monitoring
- Real-Time Analyze Data for Useful Meaning
- No More SNMP

SNMP Weakness :

- A protocol that is over 20 years old
- Doesn't scale
- Not real-time
 - Polling Interval
- Not supported for modern workloads such as container
- Not reliable (can't tell if traps are really being sent or delivered)
 - Polling Interval

	Push (Streaming Telemetry)	Pull (SNMP)
Init Check	Push all info while booting	Wait for server to pull SNMP info
Scalability	Push info to server only in need	Server need to pull info at a certain time
Latency	Low network bandwidth Real-time	High network bandwidth No real-time, Long time interval

Proactive Analytics

Proactive Analytics

- Nip it in the bud
- Intent Based Analytics

- Ask your network a 'question':
- Are there **continuous packet drops** on any of my leaf to server interfaces?
- Is there a large **ECMP imbalance** in my leaf/spine network?
- Is my VXLAN/EVPN overlay network correctly programmed across my entire network?
- Network performance is slow between Server A and Storage X.
 Is there a bottleneck in the network somewhere?
- Are there any peer-links being actively utilized for large amounts of traffic?
- Are physical VLANs and VMware VLANs synchronized on every link between ESXi and leaf switch?
- Is there **memory leak** in any of my network devices?

Proactive Analytics Operations - Blueprint - Intent Based Analytics (IBA)

for Proactive Monitoring

SUTTERVECTION NETWORKS. ANTIQUES TESETVED. Subject to errors and mappines. - WWW.EQUE-COTE.COM

Recap

Recap: Latest SDDC Design Principles

- CLOS for Scale-Out
- Vender agnostic
- Full Life Cycle Automation
- Real-time Monitoring
- Proactive Analytics

www.edge-core.com

THANK YOU